
Chapter 3. Operators

and Expressions

In This Chapter

In this chapter we will get acquainted with the operators in C# and the

actions they can perform when used with the different data types. In the

beginning, we will explain which operators have higher priority and we will

analyze the different types of operators, according to the number of the

arguments they can take and the actions they perform. In the second part,

we will examine the conversion of data types. We will explain when and

why it is needed to be done and how to work with different data types. At the

end of the chapter, we will pay special attention to the expressions and how

we should work with them. Finally, we have prepared exercises to strengthen

our knowledge of the material in this chapter.

Operators

Every programming language uses operators, through which we can perform

different actions on the data. Let’s take a look at the operators in C# and see

what they are for and how they are used.

What Is an Operator?

After we have learned how to declare and set a variable in the previous

chapter, we will discuss how to perform various operations with them. For this

purpose we will get familiar with operators.

Operators allow processing of primitive data types and objects. They take as

an input one or more operands and return some value as a result. Operators

in C# are special characters (such as "+", ".", "^", etc.) and they perform

transformations on one, two or three operands. Examples of operators in C#

are the signs for adding, subtracting, multiplication and division from math

(+, -, *, /) and the operations they perform on the integers and the real

numbers.

Operators in C#

Operators in C# can be separated in several different categories:

- Arithmetic operators – they are used to perform simple mathematical

operations.

140 Fundamentals of Computer Programming with C#

- Assignment operators – allow assigning values to variables.

- Comparison operators – allow comparison of two literals and/or

variables.

- Logical operators – operators that work with Boolean data types and

Boolean expressions.

- Binary operators – used to perform operations on the binary

representation of numerical data.

- Type conversion operators – allow conversion of data from one type to

another.

Operator Categories

Below is a list of the operators, separated into categories:

Category Operators

arithmetic -, +, *, /, %, ++, --

logical &&, ||, !, ^

binary &, |, ^, ~, <<, >>

comparison ==,!=, >, <, >=, <=

assignment =, +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=

string concatenation +

type conversion (type), as, is, typeof, sizeof

other ., new, (), [], ?:, ??

Types of Operators by Number of Arguments

Operators can be separated into different types according to the number of

arguments they could take:

Operator type Number of arguments (operands)

unary takes one operand

binary takes two operands

ternary takes three operands

All binary operators in C# are left-associative, i.e. the expressions are

calculated from left to right, except for the assignment operators. All

assignment operators and conditional operators ?: and ?? are right-

associative, i.e. the expressions are calculated from right to left. The unary

operators are not associative.

Some of the operators in C# perform different operations on the different

data types. For example the operator +. When it is used on numeric data

Chapter 3. Operators and Expressions 141

types (int, long, float, etc.), the operator performs mathematical addition.

However, when we use it on strings, the operator concatenates (joins

together) the content of the two variables/literals and returns the new string.

Operators – Example

Here is an example of using operators:

int a = 7 + 9;
Console.WriteLine(a); // 16

string firstName = "John";
string lastName = "Doe";

// Do not forget the space between them
string fullName = firstName + " " + lastName;
Console.WriteLine(fullName); // John Doe

The example shows how, as explained above, when the operator + is used on

numbers it returns a numerical value, and when it is used on strings it returns

concatenated strings.

Operator Precedence in C#

Some operators have precedence (priority) over others. For example, in

math multiplication has precedence over addition. The operators with a higher

precedence are calculated before those with lower. The operator () is used to

change the precedence and like in math, it is calculated first.

The following table illustrates the precedence of the operators in C#:

Priority Operators

Highest

priority

…

(,)

++, -- (as postfix), new, (type), typeof, sizeof

++, -- (as prefix), +, - (unary), !, ~

*, /, %

+ (string concatenation)

+, -

<<, >>

<, >, <=, >=, is, as

==, !=

&, ^, |

142 Fundamentals of Computer Programming with C#

Lowest

priority
&&

||

?:, ??

=, *=, /=, %=, +=, -=, <<=, >>=, &=, ^=, |=

The operators located upper in the table have higher precedence than

those below them, and respectively they have an advantage in the calculation

of an expression. To change the precedence of an operator we can use

brackets.

When we write expressions that are more complex or have many operators, it

is recommended to use brackets to avoid difficulties in reading and

understanding the code. For example:

// Ambiguous
x + y / 100

// Unambiguous, recommended
x + (y / 100)

Arithmetical Operators

The arithmetical operators in C# +, -, * are the same like the ones in math.

They perform addition, subtraction and multiplication on numerical values and

the result is also a numerical value.

The division operator / has different effect on integer and real numbers.

When we divide an integer by an integer (like int, long and sbyte) the

returned value is an integer (no rounding, the fractional part is cut). Such

division is called an integer division. Example of integer division: 7 / 3 = 2.

Integer division by 0 is not allowed and causes a runtime exception

DivideByZeroException. The remainder of integer division of integers can be

obtained by the operator %. For example, 7 % 3 = 1, and –10 % 2 = 0.

When dividing two real numbers or two numbers, one of which is real (e.g.

float, double, etc.), a real division is done (not integer), and the result is a

real number with a whole and a fractional part. For example: 5.0 / 2 = 2.5. In

the division of real numbers it is allowed to divide by 0.0 and respectively

the result is +∞ (Infinity), -∞ (-Infinity) or NaN (invalid value).

The operator for increasing by one (increment) ++ adds one unit to the

value of the variable, respectively the operator -- (decrement) subtracts one

unit from the value. When we use the operators ++ and -- as a prefix (when

we place them immediately before the variable), the new value is calculated

first and then the result is returned. When we use the same operators as

post-fix (meaning when we place them immediately after the variable) the

Chapter 3. Operators and Expressions 143

original value of the operand is returned first, then the addition or subtraction

is performed.

Arithmetical Operators – Example

Here are some examples of arithmetic operators and their effect:

int squarePerimeter = 17;
double squareSide = squarePerimeter / 4.0;
double squareArea = squareSide * squareSide;
Console.WriteLine(squareSide); // 4.25
Console.WriteLine(squareArea); // 18.0625

int a = 5;
int b = 4;
Console.WriteLine(a + b); // 9
Console.WriteLine(a + (b++)); // 9
Console.WriteLine(a + b); // 10
Console.WriteLine(a + (++b)); // 11
Console.WriteLine(a + b); // 11
Console.WriteLine(14 / a); // 2
Console.WriteLine(14 % a); // 4

int one = 1;
int zero = 0;
// Console.WriteLine(one / zero); // DivideByZeroException

double dMinusOne = -1.0;
double dZero = 0.0;
Console.WriteLine(dMinusOne / zero); // -Infinity
Console.WriteLine(one / dZero); // Infinity

Logical Operators

Logical (Boolean) operators take Boolean values and return a Boolean result

(true or false). The basic Boolean operators are "AND" (&&), "OR" (||),

"exclusive OR" (^) and logical negation (!).

The following table contains the logical operators in C# and the operations

that they perform:

x y !x x && y x || y x ^ y

true true false true true false

true false false false true true

false true true false true true

144 Fundamentals of Computer Programming with C#

false false true false false false

The table and the following example show that the logical "AND" (&&) returns

true only when both variables contain truth. Logical "OR" (||) returns true

when at least one of the operands is true. The logical negation operator (!)

changes the value of the argument. For example, if the operand has a value

true and a negation operator is applied, the new value will be false. The

negation operator is a unary operator and it is placed before the argument.

Exclusive "OR" (^) returns true if only one of the two operands has the value

true. If the two operands have different values, exclusive "OR" will return the

result true, if they have the same values it will return false.

Logical Operators – Example

The following example illustrates the usage of the logical operators and their

actions:

bool a = true;
bool b = false;
Console.WriteLine(a && b); // False
Console.WriteLine(a || b); // True
Console.WriteLine(!b); // True
Console.WriteLine(b || true); // True
Console.WriteLine((5 > 7) ^ (a == b)); // False

Laws of De Morgan

Logical operations fall under the laws of De Morgan from the mathematical

logic:

!(a && b) == (!a || !b)
!(a || b) == (!a && !b)

The first law states that the negation of the conjunction (logical AND) of two

propositions is equal to the disjunction (logical OR) of their negations.

The second law states that the negation of the disjunction of both statements

is equivalent to the conjunction of their negations.

Operator for Concatenation of Strings

The operator + is used to join strings (string). It concatenates (joins) two

or more strings and returns the result as a new string. If at least one of the

arguments in the expression is of type string, and there are other operands

of type different from string, they will be automatically converted to type

string, which allows successful string concatenation.

It is fantastic how .NET runtime handles such operation incompatibilities for

us on the fly, saving us some coding time and allowing us to concentrate on

Chapter 3. Operators and Expressions 145

the main objectives of our programming task! However, it is a good practice

to not miss to cast the variables on which we wish to apply an operation; we

should instead have them converted to the appropriate type for each

operation, so that we are in full control of the end result and prevent implicit

type casts. We will provide more detailed information on casting operations

further down in the section "Type Conversion" of this chapter.

Operator for Concatenation of Strings – Example

Here is an example, which shows concatenations of two strings and a string

with a number:

string csharp = "C#";
string dotnet = ".NET";
string csharpDotNet = csharp + dotnet;
Console.WriteLine(csharpDotNet); // C#.NET
string csharpDotNet4 = csharpDotNet + " " + 5;
Console.WriteLine(csharpDotNet4); // C#.NET 5

In the example we initialize two variables of type string and assign them

values. On the third and fourth row we concatenate both strings and pass the

results to the method Console.WriteLine() to print it on the console. On the

next line we join the resulting string with a space and the number 5. We

assign the returned value to the variable csharpDotNet5, which will

automatically be converted to type string. On the last row we print the

result.

Concatenation (joining, gluing) of strings is a slow operation

and should be used carefully. It is recommended to use the

StringBuilder class for iterative (repetitive) operations on

strings.

In the chapter "Strings" we will explain in detail why the StringBuilder class

must be used for join operations on strings performed in a loop.

Bitwise Operators

A bitwise operator is an operator that acts on the binary representation of

numeric types. In computers all the data and particularly numerical data is

represented as a series of ones and zeros. The binary numeral system is

used for this purpose. For example, number 55 in the binary numeral system

is represented as 00110111.

Binary representation of data is convenient because zero and one in

electronics can be implemented by Boolean circuits, in which zero is

represented as "no electricity" or for example with a voltage of -5V and the

one is presented as "have electricity" or say with voltage +5V.

146 Fundamentals of Computer Programming with C#

We will examine in depth the binary numeral system in the chapter

"Numeral Systems", but just for now we can consider that the numbers in

computers are represented as ones and zeros, and bitwise operators are used

to analyze and change those ones to zeros and vice versa.

Bitwise operators are very similar to the logical ones. In fact, we can

imagine that the logical and bitwise operators perform the same thing but

using different data types. Logical operators work with the values true and

false (Boolean values), while bitwise operators work with numerical values

and are applied bitwise over their binary representation, i.e., they work with

the bits of the number (the digits 0 and 1 of which it consists). Just like the

logical operators in C#, there are bitwise operators "AND" (&), bitwise "OR"

(|), bitwise negation (~) and excluding "OR" (^).

Bitwise Operators and Their Performance

The bitwise operators' performance on binary digits 0 and 1 is shown in the

following table:

x y ~x x & y x | y x ^ y

1 1 0 1 1 0

1 0 0 0 1 1

0 1 1 0 1 1

0 0 1 0 0 0

As we see bitwise and logical operators are very much alike. The difference in

the writing of "AND" and "OR" is that the logical operators are written with

double ampersand (&&) and double vertical bar (||), and the bitwise – with a

single ampersand or vertical bar (& and |). Bitwise and logical operators for

exclusive "OR" are the same "^". For logical negation we use "!", while for

bitwise negation (inversion) the "~" operator is used.

In programming there are two bitwise operators that have no analogue in

logical operators. These are the bit shift left (<<) and bit shift right (>>).

Used on numerical values, they move all the bits of the value to the left or

right. The bits that fall outside the number are lost and replaced with 0.

The bit shifting operators are used in the following way: on the left side of

the operator we place the variable (operand) with which we want to use the

operator, on the right side we put a numerical value, indicating how many bits

we want to offset. For example, 3 << 2 means that we want to move the bits

of the number three, twice to the left. The number 3 presented in bits looks

like this: "0000 0011". When you move twice left, the binary value will look

like this: "0000 1100", and this sequence of bits is the number 12. If we look

at the example we can see that actually we have multiplied the number by 4.

Bit shifting itself can be represented as multiplication (bitwise shifting left) or

division (bitwise shifting right) by a power of 2. This occurrence is due to the

Chapter 3. Operators and Expressions 147

nature of the binary numeral system. Example of moving to the right is 6 >>

2, which means to move the binary number "0000 0110" with two positions to

the right. This means that we will lose two right-most digits and feed them

with zeros on the left. The end result will be "0000 0001" which is 1.

Bitwise Operators – Example

Here is an example of using bitwise operators. The binary representation of

the numbers and the results of the bitwise operators are shown in the

comments (green text):

byte a = 3; // 0000 0011 = 3
byte b = 5; // 0000 0101 = 5

Console.WriteLine(a | b); // 0000 0111 = 7
Console.WriteLine(a & b); // 0000 0001 = 1
Console.WriteLine(a ^ b); // 0000 0110 = 6
Console.WriteLine(~a & b); // 0000 0100 = 4
Console.WriteLine(a << 1); // 0000 0110 = 6
Console.WriteLine(a << 2); // 0000 1100 = 12
Console.WriteLine(a >> 1); // 0000 0001 = 1

In the example we first create and initialize the values of two variables a and

b. Then we print on the console the results of some bitwise operations on the

two variables. The first operation that we apply is "OR". The example shows

that for all positions where there was 1 in the binary representation of the

variables a and b, there is also 1 in the result. The second operation is "AND".

The result of the operation contains 1 only in the right-most bit, because the

only place where a and b have 1 at the same time is their right-most bit.

Exclusive "OR" returns ones only in positions where a and b have different

values in their binary bits. Finally, the logical negation and bitwise shifting:

left and right, are illustrated.

Comparison Operators

Comparison operators in C# are used to compare two or more operands. C#

supports the following comparison operators:

- greater than (>)

- less than (<)

- greater than or equal to (>=)

- less than or equal to (<=)

- equality (==)

- difference (!=)

148 Fundamentals of Computer Programming with C#

All comparison operators in C# are binary (take two operands) and the

returned result is a Boolean value (true or false). Comparison operators

have lower priority than arithmetical operators but higher than the

assignment operators.

Comparison Operators – Example

The following example demonstrates the usage of comparison operators in

C#:

int x = 10, y = 5;
Console.WriteLine("x > y : " + (x > y)); // True
Console.WriteLine("x < y : " + (x < y)); // False
Console.WriteLine("x >= y : " + (x >= y)); // True
Console.WriteLine("x <= y : " + (x <= y)); // False
Console.WriteLine("x == y : " + (x == y)); // False
Console.WriteLine("x != y : " + (x != y)); // True

In the example, first we create two variables x and y and we assign them the

values 10 and 5. On the next line we print on the console using the method

Console.WriteLineſ…ƀ the result from comparing the two variables x and y

using the operator >. The returned value is true because x has a greater

value than y. Similarly, in the next rows the results from the other 5

comparison operators, used to compare the variables x and y, are printed.

Assignment Operators

The operator for assigning value to a variable is "=" (the character for

mathematical equation). The syntax used for assigning value is as it follows:

operand1 = literal, expression or operand2;

Assignment Operators – Example

Here is an example to show the usage of the assignment operator:

int x = 6;
string helloString = "Hello string.";
int y = x;

In the example we assign value 6 to the variable x. On the second line we

assign a text literal to the variable helloString, and on the third line we

copy the value of the variable x to the variable y.

Chapter 3. Operators and Expressions 149

Cascade Assignment

The assignment operator can be used in cascade (more than once in the

same expression). In this case assignments are carried out consecutively from

right to left. Here’s an example:

int x, y, z;
x = y = z = 25;

On the first line in the example we initialize three variables and on the second

line we assign them the value 25.

The assignment operator in C# is "=", while the comparison

operator is "==". The exchange of the two operators is a

common error when we are writing code. Be careful not to

confuse the comparison operator and the assignment

operator as they look very similar.

Compound Assignment Operators

Except the assignment operator there are also compound assignment

operators. They help to reduce the volume of the code by typing two

operations together with an operator: operation and assignment. Compound

operators have the following syntax:

operand1 operator = operand2;

The upper expression is like the following:

operand1 = operand1 operator operand2;

Here is an example of a compound operator for assignment:

int x = 2;
int y = 4;

x *= y; // Same as x = x * y;
Console.WriteLine(x); // 8

The most commonly used compound assignment operators are += (adds value

of operand2 to operand1), -= (subtracts the value of the right operand from

the value of the left one).Other compound assignment operators are *=, /=

and %=.

The following example gives a good idea of how the compound assignment

operators work:

int x = 6;

150 Fundamentals of Computer Programming with C#

int y = 4;

Console.WriteLine(y *= 2); // 8
int z = y = 3; // y=3 and z=3

Console.WriteLine(z); // 3
Console.WriteLine(x |= 1); // 7
Console.WriteLine(x += 3); // 10
Console.WriteLine(x /= 2); // 5

In the example, first we create the variables x and y and assign them values

6 and 4. On the next line we print on the console y, after we have assigned it

a new value using the operator *= and the literal 2.The result of the operation

is 8. Further in the example we apply the other compound assignment

operators and print the result on the console.

Conditional Operator ?:

The conditional operator ?: uses the Boolean value of an expression to

determine which of two other expressions must be calculated and returned as

a result. The operator works on three operands and that is why it is called

ternary operator. The character "?" is placed between the first and second

operand, and ":" is placed between the second and third operand. The first

operand (or expression) must be Boolean, and the next two operands must

be of the same type, such as numbers or strings.

The operator ?: has the following syntax:

operand1 ? operand2 : operand3

It works like this: if operand1 is set to true, the operator returns as a result

operand2. Otherwise (if operand1 is set to false), the operator returns as a

result operand3.

During the execution, the value of the first argument is calculated. If it has

value true, then the second (middle) argument is calculated and it is

returned as a result. However, if the calculated result of the first argument is

false, then the third (last) argument is calculated and it is returned as a

result.

Conditional Operator "?:" – Example

The following example shows the usage of the operator "?:":

int a = 6;
int b = 4;
Console.WriteLine(a > b ? "a>b" : "b<=a"); // a>b

Chapter 3. Operators and Expressions 151

int num = a == b ? 1 : -1; // num will have value -1

Other Operators

So far we have examined arithmetic, logical and bitwise operators, the

operator for concatenating strings, also the conditional operator ?:. Besides

them in C # there are several other operators worth mentioning.

The "." Operator

The access operator "." (dot) is used to access the member fields or

methods of a class or object. Example of usage of point operator:

Console.WriteLine(DateTime.Now); // Prints the date + time

Square Brackets [] Operator

Square brackets [] are used to access elements of an array by index,

they are the so-called indexer. Indexers are also used for accessing

characters in a string. Example:

int[] arr = { 1, 2, 3 };
Console.WriteLine(arr[0]); // 1
string str = "Hello";
Console.WriteLine(str[1]); // e

Brackets () Operator

Brackets () are used to override the priority of execution of expressions

and operators. We have already seen how the brackets work.

Type Conversion Operator

The operator for type conversion (type) is used to convert a variable from

one type to another. We will examine it in details in the section "Type

Conversion".

Operator "as"

The operator as also is used for type conversion but invalid conversion

returns null, not an exception.

Operator "new"

The new operator is used to create and initialize new objects. We will

examine it in details in the chapter "Creating and Using Objects".

152 Fundamentals of Computer Programming with C#

Operator "is"

The is operator is used to check whether an object is compatible with a given

type (check object's type).

Operator "??"

The operator ?? is similar to the conditional operator ?:. The difference is that

it is placed between two operands and returns the left operand only if its

value is not null, otherwise it returns the right operand. Example:

int? a = 5;
Console.WriteLine(a ?? -1); // 5
string name = null;
Console.WriteLine(name ?? "(no name)"); // (no name)

Other Operators – Examples

Here is an example that shows the operators we just explained:

int a = 6;
int b = 3;

Console.WriteLine(a + b / 2); // 7
Console.WriteLine((a + b) / 2); // 4

string s = "Beer";
Console.WriteLine(s is string); // True

string notNullString = s;
string nullString = null;
Console.WriteLine(nullString ?? "Unspecified"); // Unspecified
Console.WriteLine(notNullString ?? "Specified"); // Beer

Type Conversion and Casting

Generally, operators work over arguments with the same data type. However,

C# has a wide variety of data types from which we can choose the most

appropriate for a particular purpose. To perform an operation on variables of

two different data types we need to convert both to the same data type. Type

conversion (typecasting) can be explicit and implicit.

All expressions in C# have a type. This type can derive from the expression

structure and the types, variables and literals used in it. It is possible to write

an expression which type is inappropriate for the current context. In some

cases this will lead to a compilation error, but in other cases the context can

get a type that is similar or related to the type of the expression. In this case

the program performs a hidden type conversion.

Chapter 3. Operators and Expressions 153

Specific conversion from type S to type T allows the expression of type S to be

treated as an expression of type T during the execution of the program. In

some cases this will require a validation of the transformation. Here are some

examples:

- Conversion of type object to type string will require verification at

runtime to ensure that the value is really an instance of type string.

- Conversion from string to object does not require any verification. The

type string is an inheritor of the type object and can be converted to

its base class without a risk of an error or data loss. We shall examine

inheritance in details in the chapter "Object-Oriented Programming

Principles".

- Conversion of type int to long can be made without verification during

the execution, because there is no risk of data loss since the set of

values of type int is a subset of values of type long.

- Conversion from type double to long requires conversion of 64-bit

floating-point value to 64-bit integer. Depending on the value, data loss

is possible and therefore it is necessary to convert the types explicitly.

In C# not all types can be converted to all other types, but only to some of

them. For convenience, we shall group some of the possible transformations

in C# according to their type into three categories:

- implicit conversion;

- explicit conversion;

- conversion to or from string;

Implicit Type Conversion

Implicit (hidden) type conversion is possible only when there is no risk of data

loss during the conversion, i.e. when converting from a lower range type to a

larger range (e.g. from int to long). To make an implicit conversion it is not

necessary to use any operator and therefore such transformation is called

implicit. The implicit conversion is done automatically by the compiler when

you assign a value with lower range to a variable with larger range or if the

expression has several types with different ranges. In such case the

conversion is executed into the type with the highest range.

Implicit Type Conversion – Examples

Here is an example of implicit type conversion:

int myInt = 5;
Console.WriteLine(myInt); // 5

long myLong = myInt;
Console.WriteLine(myLong); // 5

154 Fundamentals of Computer Programming with C#

Console.WriteLine(myLong + myInt); // 10

In the example we create a variable myInt of type int and assign it the value

5. After that we create a variable myLong of type long and assign it the value

contained in myInt. The value stored in myLong is automatically converted

from type int to type long. Finally, we output the result from adding the two

variables. Because the variables are from different types they are

automatically converted to the type with the greater range, i.e. to type long

and the result that is printed on the console is long again. Indeed, the given

parameter to the method Console.WriteLine() is of type long, but inside

the method it will be converted again, this time to type string, so it can be

printed on the console. This transformation is performed by the method

Long.ToString().

Possible Implicit Conversions

Here are some possible implicit conversions of primitive data types in C#:

- sbyte → short, int, long, float, double, decimal;

- byte → short, ushort, int, uint, long, ulong, float, double,
decimal;

- short → int, long, float, double, decimal;

- ushort → int, uint, long, ulong, float, double, decimal;

- char → ushort, int, uint, long, ulong, float, double, decimal

(although char is a character type in some cases it may be regarded as

a number and have a numeric type of behavior, it can even participate

in numeric expressions);

- uint → long, ulong, float, double, decimal;

- int → long, float, double, decimal;

- long → float, double, decimal;

- ulong → float, double, decimal;

- float → double.

There is no data loss when converting types of smaller range to types

with a larger range. The numerical value remains the same after

conversion. There are a few exceptions. When you convert type int to type

float (32-bit values), the difference is that int uses all bits for a whole

number, whereas float has a part of bits used for representation of a

fractional part. Hence, loss of precision is possible because of rounding when

conversion from int to float is made. The same applies for the conversion of

64-bit long to 64-bit double.

Chapter 3. Operators and Expressions 155

Explicit Type Conversion

Explicit type conversion is used whenever there is a possibility of data loss.

When converting floating point type to integer type there is always a loss of

data coming from the elimination of the fractional part and an explicit

conversion is obligatory (e.g. double to long). To make such a conversion it

is necessary to use the operator for data conversion (type). There may also

be data loss when converting a type with a wider range to type with a

narrower one (double to float or long to int).

Explicit Type Conversion – Example

The following example illustrates the use of explicit type conversion and data

loss that may occur in some cases:

double myDouble = 5.1d;
Console.WriteLine(myDouble); // 5.1

long myLong = (long)myDouble;
Console.WriteLine(myLong); // 5

myDouble = 5e9d; // 5 * 10^9
Console.WriteLine(myDouble); // 5000000000

int myInt = (int)myDouble;
Console.WriteLine(myInt); // -2147483648
Console.WriteLine(int.MinValue); // -2147483648

In the first line of the example we assign a value 5.1 to the variable

myDouble. After we convert (explicitly) to type long using the operator

(long) and print on the console the variable myLong we see that the variable

has lost its fractional part, because long is an integer. Then we assign to the

real double precision variable myDouble the value 5 billion. Finally, we convert

myDouble to int by the operator (int) and print variable myInt. The result is

the same like when we print int.MinValue because myDouble contains a

value bigger than the range of int.

It is not always possible to predict what the value of a

variable will be after its scope overflows! Therefore, use

sufficiently large types and be careful when switching to a

"smaller" type.

Data Loss during Type Conversion

We will give an example for data loss during type conversion:

long myLong = long.MaxValue;

156 Fundamentals of Computer Programming with C#

int myInt = (int)myLong;

Console.WriteLine(myLong); // 9223372036854775807
Console.WriteLine(myInt); // -1

The type conversion operator may also be used in case of an intentional

implicit conversion. This contributes to the readability of code, reducing the

chance for errors and it is considered good practice by many programmers.

Here are some more examples for type conversions:

float heightInMeters = 1.74f; // Explicit conversion
double maxHeight = heightInMeters; // Implicit
double minHeight = (double)heightInMeters; // Explicit
float actualHeight = (float)maxHeight; // Explicit

float maxHeightFloat = maxHeight; // Compilation error!

In the example above at the last line we have an expression that will generate

a compilation error. This is because we try implicitly to convert type double to

float, which can cause data loss. C# is a strongly typed programming

language and does not allow such appropriation of values.

Forcing Overflow Exceptions during Casting

Sometimes it is convenient, instead of getting the wrong result, when a type

overflows during switching from larger to smaller type, to get notification of

the problem. This is done by the keyword checked which includes a check for

overflow in integer types:

double d = 5e9d; // 5 * 10^9
Console.WriteLine(d); // 5000000000
int i = checked((int)d); // System.OverflowException
Console.WriteLine(i);

During the execution of the code fragment above an exception (i.e.

notification of an error) of type OverflowException is raised. More

information about the exceptions and the methods to catch and handle them

can be found in the chapter "Exception Handling".

Possible Explicit Conversions

The explicit conversions between numeral types in C# are possible between

any couple among the following types:

sbyte, byte, short, ushort, char, int, uint, long, ulong, float, double,

decimal

Chapter 3. Operators and Expressions 157

In these conversions data can be lost, like data about the number size or

information about its precision.

Notice that conversion to or from string is not possible through typecasting.

Conversion to String

If it is necessary we can convert any type of data, including the value null, to

string. The conversion of strings is done automatically whenever you use the

concatenation operator (+) and one of the arguments is not of type string. In

this case the argument is converted to a string and the operator returns a

new string representing the concatenation of the two strings.

Another way to convert different objects to type string is to call the method

ToString() of the variable or the value. It is valid for all data types in .NET

Framework. Even calling 3.ToString() is fully valid in C# and the result will

return the string "3".

Conversion to String – Example

Let’s take a look on several examples for converting different data types to
string:

int a = 5;
int b = 7;

string sum = "Sum = " + (a + b);
Console.WriteLine(sum);

String incorrect = "Sum = " + a + b;
Console.WriteLine(incorrect);

Console.WriteLine(
 "Perimeter = " + 2 * (a + b) + ". Area = " + (a * b) + ".");

The result from the example is as follows:

Sum = 12
Sum = 57
Perimeter = 24. Area = 35.

From the results it is obvious, that concatenating a number to a character

string returns in result the string followed by the text representation of the

number. Note that the "+" for concatenating strings can cause unpleasant

effects on the addition of numbers, because it has equal priority with the

operator "+" for mathematical addition. Unless the priorities of the operations

are changed by placing the brackets, they will always be executed from left to

right.

158 Fundamentals of Computer Programming with C#

More details about converting from and to string we will look at the chapter

"Console Input and Output".

Expressions

Much of the program’s work is the calculation of expressions. Expressions

are sequences of operators, literals and variables that are calculated to

a value of some type (number, string, object or other type). Here are some

examples of expressions:

int r = (150-20) / 2 + 5;

// Expression for calculating the surface of the circle
double surface = Math.PI * r * r;

// Expression for calculating the perimeter of the circle
double perimeter = 2 * Math.PI * r;

Console.WriteLine(r);
Console.WriteLine(surface);
Console.WriteLine(perimeter);

In the example three expressions are defined. The first expression calculates

the radius of a circle. The second calculates the area of a circle, and the last

one finds the perimeter. Here is the result from the fragment above:

70
15393.80400259
439.822971502571

Side Effects of Expressions

The calculation of the expression can have side effects, because the

expression can contain embedded assignment operators, can cause increasing

or decreasing of the value and calling methods. Here is an example of such a

side effect:

int a = 5;
int b = ++a;

Console.WriteLine(a); // 6
Console.WriteLine(b); // 6

Chapter 3. Operators and Expressions 159

Expressions, Data Types and Operator Priorities

When writing expressions, the data types and the behavior of the used

operators should be considered. Ignoring this can lead to unexpected results.

Here are some simple examples:

// First example
double d = 1 / 2;
Console.WriteLine(d); // 0, not 0.5

// Second example
double half = (double)1 / 2;
Console.WriteLine(half); // 0.5

In the first example, an expression divides two integers (written this way, 1

and two are integers) and assigns the result to a variable of type double. The

result may be unexpected for some people, but that is because they are

ignoring the fact that in this case the operator "/" works over integers and the

result is an integer obtained by cutting the fractional part.

The second example shows that if we want to do division with fractions in the

result, it is necessary to convert to float or double at least one of the

operands. In this scenario the division is no longer integer and the result is

correct.

Division by Zero

Another interesting example is division by 0. Most programmers think that

division by 0 is an invalid operation and causes an error at runtime

(exception) but this is actually true only for integer division by 0. Here is an

example, which shows that fractional division by 0 is Infinity or NaN:

int num = 1;
double denum = 0; // The value is 0.0 (real number)
int zeroInt = (int) denum; // The value is 0 (integer number)
Console.WriteLine(num / denum); // Infinity
Console.WriteLine(denum / denum); // NaN
Console.WriteLine(zeroInt / zeroInt); // DivideByZeroException

Using Brackets to Make the Code Clear

When working with expressions it is important to use brackets whenever

there is the slightest doubt about the priorities of the operations. Here is an

example that shows how useful the brackets are:

double incorrect = (double)((1 + 2) / 4);
Console.WriteLine(incorrect); // 0

160 Fundamentals of Computer Programming with C#

double correct = ((double)(1 + 2)) / 4;
Console.WriteLine(correct); // 0.75

Console.WriteLine("2 + 3 = " + 2 + 3); // 2 + 3 = 23
Console.WriteLine("2 + 3 = " + (2 + 3)); // 2 + 3 = 5

Exercises

1. Write an expression that checks whether an integer is odd or even.

2. Write a Boolean expression that checks whether a given integer is

divisible by both 5 and 7, without a remainder.

3. Write an expression that looks for a given integer if its third digit (right

to left) is 7.

4. Write an expression that checks whether the third bit in a given integer

is 1 or 0.

5. Write an expression that calculates the area of a trapezoid by given

sides a, b and height h.

6. Write a program that prints on the console the perimeter and the area

of a rectangle by given side and height entered by the user.

7. The gravitational field of the Moon is approximately 17% of that on the

Earth. Write a program that calculates the weight of a man on the

moon by a given weight on the Earth.

8. Write an expression that checks for a given point {x, y} if it is within

the circle K({0, 0}, R=5). Explanation: the point {0, 0} is the center of

the circle and 5 is the radius.

9. Write an expression that checks for given point {x, y} if it is within the

circle K({0, 0}, R=5) and out of the rectangle [{-1, 1}, {5, 5}].

Clarification: for the rectangle the lower left and the upper right corners

are given.

10. Write a program that takes as input a four-digit number in format abcd

(e.g. 2011) and performs the following actions:

- Calculates the sum of the digits (in our example 2+0+1+1 = 4).

- Prints on the console the number in reversed order: dcba (in our

example 1102).

- Puts the last digit in the first position: dabc (in our example 1201).

- Exchanges the second and the third digits: acbd (in our example

2101).

Chapter 3. Operators and Expressions 161

11. We are given a number n and a position p. Write a sequence of

operations that prints the value of the bit on the position p in the

number (0 or 1). Example: n=35, p=5 -> 1. Another example: n=35,

p=6 -> 0.

12. Write a Boolean expression that checks if the bit on position p in the

integer v has the value 1. Example v=5, p=1 -> false.

13. We are given the number n, the value v (v = 0 or 1) and the position p.

write a sequence of operations that changes the value of n, so the bit on

the position p has the value of v. Example: n=35, p=5, v=0 -> n=3.

Another example: n=35, p=2, v=1 -> n=39.

14. Write a program that checks if a given number n (1 < n < 100) is a

prime number (i.e. it is divisible without remainder only to itself and 1).

15. * Write a program that exchanges the values of the bits on positions

3, 4 and 5 with bits on positions 24, 25 and 26 of a given 32-bit unsigned

integer.

16. * Write a program that exchanges bits {p, p+м, …, p+k-1} with bits {q,

q+м, …, q+k-1} of a given 32-bit unsigned integer.

Solutions and Guidelines

1. Take the remainder of dividing the number by 2 and check if it is 0 or

1 (respectively the number is odd or even). Use % operator to calculate

the remainder of integer division.

2. Use a logical "AND" (&& operator) and the remainder operation % in

division. You can also solve the problem by only one test: the division of

35 (think why).

3. Divide the number by 100 and save it in a new variable, which then

divide by 10 and take the remainder. The remainder of the division by 10

is the third digit of the original number. Check if it is equal to 7.

4. Use bitwise "AND" on the current number and the number that has 1

only in the third bit (i.e. number 8, if bits start counting from 0). If the

returned result is different from 0 the third bit is 1:

int num = 25;
bool bit3 = (num & 8) != 0;

5. The formula for trapezoid surface is: S = (a + b) * h / 2.

6. Search the Internet for how to read integers from the console and use

the formula for rectangle area calculation. If you have difficulties see

instructions on the next problem.

7. Use the following code to read the number from the console:

162 Fundamentals of Computer Programming with C#

Console.Write("Enter number: ");
int number = Convert.ToInt32(Console.ReadLine());

Then multiply by 0.17 and print it.

8. Use the Pythagorean Theorem a2 + b2 = c2. The point is inside the circle

when (x*x) + (y*y) ≤ 5*5.

9. Use the code from the previous task and add a check for the

rectangle. A point is inside a rectangle with walls parallel to the axes,

when in the same time it is right of the left wall, left of the right wall,

down from the top wall and above the bottom wall.

10. To get the individual digits of the number you can divide by 10 and

take the remainder of the division by 10:

int a = num % 10;
int b = (num / 10) % 10;
int c = (num / 100) % 10;
int d = (num / 1000) % 10;

11. Use bitwise operations:

int n = 35; // 00100011
int p = 6;
int i = 1; // 00000001
int mask = i << p; // Move the 1-st bit left by p positions

// If i & mask are positive then the p-th bit of n is 1
Console.WriteLine((n & mask) != 0 ? 1 : 0);

12. The task is similar to the previous one.

13. Use bitwise operations by analogy with the previous two problems. You

can reset the bit at position p in the number n as follows:

n = n & (~(1 << p));

You can set bits in the unit at position p in the number n as follows:

n = n | (1 << p);

Think how you can combine the above two hints.

14. Read about loops in the Internet or in the chapter “Loops”. Use a loop

and check the number for divisibility by all integers from 1 to the square

root of the number. Since n < 100, you can find in advance all prime

numbers from 1 to 100 and checks the input over them. The prime

Chapter 3. Operators and Expressions 163

numbers in the range [м…млл] are: 2, о, р, 7, мм, мо, м7, м9, 2о, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 and 97.

15. Use 3 times a combination of getting and setting a bit at a given

position. The first exchange is given below:

int bit3 = (num >> 3) & 1;
int bit24 = (num >> 24) & 1;
num = num & (~(1 << 24)) | (bit3 << 24);
num = num & (~(1 << 3)) | (bit24 << 3);

16. Extend the solution of the previous problem to perform a sequence of

bit exchanges in a loop. Read about loops in the chapter “Loops”.

